Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

tert-Butyl 2-[2-(ethoxycarbothioyl-amino)-3-pyridyloxy]acetate and tert-butyl 2-(3-thioxopyrido[2,1-c]-[1,2,4]thiadiazol-8-yloxy)acetate

Simon J. Coles,* David Douheret, Michael B. Hursthouse, Jeremy D. Kilburn and Sara Rossi

Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
Correspondence e-mail: s.j.coles@soton.ac.uk

Received 30 March 2000
Accepted 11 April 2000
Data validation number: IUC0000112
Compounds (I), $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, and (II), $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$, are two minor products of the same reaction. Both structures contain identical ester functionalities in similar orientations. Both independent molecules of (I) contain an ethoxycarbothioylamine moiety, whilst (II) possesses a novel exocyclic thione system fused with a pyridine ring.

Comment

An alternative approach to the resolution of racemates involves the development of enantioselective receptors capable of strongly binding substrates (Webb \& Wilcox, 1993). The title compounds were synthesized during an on-going scheme of research investigating the preparation of thiourea derivatives as binding sites for the separation of racemic mixtures of carboxylic acid derivatives. Attempts to prepare substituted N, N^{\prime}-bis(2-pyridyl) thioureas resulted in the formation of a mixture of products which were separated by column chromatography, concentrated and recrystallized. Two compounds were identified, i.e. (I) and (II), providing unexpected results.

(I)

(II)

Compound (I) crystallizes with two independent molecules in the asymmetric unit which are bound together via intermolecular hydrogen bonding $[D \cdots A$ separations $\mathrm{N} 1 A-$ $\mathrm{H} 1 A \cdots \mathrm{~N} 2 B$ and $\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 A$ of $2.920(3)$ and
2.9737 (18) \AA, respectively]. The two independent molecules possess expected geometries that are similar, but exhibit slight torsional differences in the pendant arms $[\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2=$ $-175.15(14)$ and $-174.11(13)^{\circ}$, whilst $\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 4-\mathrm{C} 11=$ -174.72 (14) and $-179.23(14)^{\circ}$ for A and B, respectively]. The formation of the ethoxy group in (I) is attributed to the reaction between the isothiocyanate formed and the ethanol present in the chloroform $(0.5-1.0 \%$ by volume as a stabilizing agent), which is more reactive than the free amine.

The second minor fraction produces the structure of (II), which contains a novel heteroatomic fused-ring system. Both (I) and (II) contain the same ester functionalities which are geometrically virtually identical, including their orientations with respect to the ring systems $[\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6=$ -179.25 (4) and $-177.09(4)^{\circ}$ for A and B in (I), and $\mathrm{O} 1-$ $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2=178.28(2)^{\circ}$ in (II)]. The ring system is composed of a pyridine ring fused in the 3 and 4 positions to cyclic thiadiazolo and thione moieties. Inspection of the bond lengths shows a breakdown in the aromaticity of the pyridyl ring to alternating single and double bonds, apart from N1C5 [1.394 (3) A compared to 1.329 (3) and 1.330 (3) \AA in (I)] which is disturbed by the electronic structure of the fivemembered ring. The fused rings approximate planarity, exhibiting an angle from one ring plane normal to the other of $1.72(5)^{\circ}$. The imine nature of N 2 is confirmed by the lack of any peaks in the difference map corresponding to a proton. The five-membered ring system in (II) has not been observed in the solid state before and a search of the Cambridge Structural Database (Allen \& Kennard, 1993) shows the structure of 2,4-dimethyl-1,2,4-thiazolidine-3,5-dithione (Raston et al., 1974) to be the closest for comparison, with similar bond lengths and angles for both compounds.

Experimental

Thiophosgene ($0.23 \mathrm{ml}, 3.0 \mathrm{mmol}$) was added slowly to a mixture of tert-butyl 2-(2-amino-3-pyridyloxy)acetate $(1.34 \mathrm{~g}, 6.0 \mathrm{mmol})$ in chloroform (40 ml) and 0.4 M aqueous potassium carbonate (15 ml , 6.0 mmol). The mixture was heated under reflux for 5 d . After allowing to cool to room temperature, the mixture was transferred into a separating funnel, the organic layer separated and the aqueous layer extracted with chloroform (30 ml). The organic layer was dried over magnesium sulfate and concentrated in vacuo to afford a brown oil. The crude product was purified by column chromatography on silica gel, eluting with ethyl acetate-petroleum ether ($30: 70 \mathrm{v} / \mathrm{v}$), to produce three fractions. Two of these fractions were recrystallized from methanol where fraction 1 corresponds to compound (II) ($60.4 \mathrm{mg}, 5 \%$), $R_{f}=0.28$, and fraction 3 corresponds to compound (I) ($208.4 \mathrm{mg}, 16 \%$), $R_{f}=0.1$. The fractions were additionally characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and mass spectroscopy. (I), ${ }^{1}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.88(1 \mathrm{H}, s, \mathrm{NH}), 8.10(1 \mathrm{H}, d d, J=1.8,4.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{pyr}}\right), 7.05\left(2 \mathrm{H}, m, \mathrm{H}_{\mathrm{pyr}}\right), 4.63\left(2 \mathrm{H}, q, J=21.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.60(2 \mathrm{H}, s$, $\left.\mathrm{CH}_{2}\right), 1.49\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.39\left(3 \mathrm{H}, t, J=14.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.0(0), 167.2(0), 144.5(0), 141.6(0)$, 140.9 (1), 120.9 (1), 120.4 (1), 83.4 (0), 68.1 (2), 66.9 (2), 28.1 (3), 14.1 (3); LRMS (ESIPOS): $m / z 313(M+\mathrm{H})^{+}$. (II), ${ }^{1}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.14\left(1 \mathrm{H}, d d, J=1,7.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{pyr}}\right), 6.57(1 \mathrm{H}, d d, J=7.2$, $\left.7.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{pyr}}\right), 6.49\left(1 \mathrm{H}, d d, J=0.7,7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{pyr}}\right), 4.69\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right)$, $1.41\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.4$ (0),
165.1 (0), 148.4 (0), 147.1 (0), 119.1 (0), 112.1 (1), 106.9 (1), 82.3 (0), 65.9 (2), 27.9 (3); LRMS (ESIPOS): $m / z 299(M+\mathrm{H})^{+}, 337(M+\mathrm{K})^{+}$, $339\left(M+\mathrm{CH}_{3} \mathrm{CN}\right)^{+}$.

Compound (I)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=312.38$
Triclinic, $P \overline{1}$
$a=10.661(2) \AA$
$b=11.852(2) \AA$
$c=13.501(3) \AA$
$\alpha=76.85(3)^{\circ}$
$\beta=81.35(3)^{\circ}$
$\gamma=72.12(3)^{\circ}$
$V=1575.1(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.317 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 20603 reflections
$\theta=1.84-26.0^{\circ}$
$\mu=0.222 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, colourless
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$
Data collection
KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.879, T_{\text {max }}=0.986$
20603 measured reflections
6191 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.039$
$w R\left(F^{2}\right)=0.123$
$S=0.883$
6191 reflections
388 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$
$M_{r}=298.37$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=15.521$ (3) A
$b=6.8270(10) \AA$
$c=13.574$ (3) \AA
$\beta=100.06$ (3) ${ }^{\circ}$
$V=1416.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.399 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12963 reflections
$\theta=2.67-27.43^{\circ}$
$\mu=0.381 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, light brown
$0.18 \times 0.15 \times 0.03 \mathrm{~mm}$

Data collection

KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.888, T_{\text {max }}=0.998$
12963 measured reflections 3159 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.039$
$w R\left(F^{2}\right)=0.122$
$S=0.807$
3159 reflections
175 parameters

$$
\begin{aligned}
& 2304 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.0583 \\
& \theta_{\max }=27.43^{\circ} \\
& h=-19 \rightarrow 19 \\
& k=-8 \rightarrow 8 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

$$
\begin{gathered}
\text { H-atom parameters constrained } \\
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1000 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$\mathrm{S} 1 A-\mathrm{C} 1 A$	$1.6656(17)$	$\mathrm{O} 2 B-\mathrm{C} 8 B$	$1.3640(19)$
$\mathrm{S} 1 B-\mathrm{C} 1 B$	$1.6614(16)$	$\mathrm{O} 2 B-\mathrm{C} 9 B$	$1.4242(19)$
$\mathrm{O} 1 A-\mathrm{C} 1 A$	$1.3414(19)$	$\mathrm{O} 3 A-\mathrm{C} 10 A$	$1.2079(19)$
$\mathrm{O} 1 A-\mathrm{C} 2 A$	$1.454(2)$	$\mathrm{O} 3 B-\mathrm{C} 10 B$	$1.1975(19)$
$\mathrm{O} 1 B-\mathrm{C} 1 B$	$1.3347(19)$	$\mathrm{O} 4 A-\mathrm{C} 10 A$	$1.3304(19)$
$\mathrm{O} 1 B-\mathrm{C} 2 B$	$1.4535(19)$	$\mathrm{O} 4 A-\mathrm{C} 11 A$	$1.487(2)$
$\mathrm{O} 2 A-\mathrm{C} 8 A$	$1.3693(19)$	$\mathrm{O} 4 B-\mathrm{C} 10 B$	$1.335(2)$
$\mathrm{O} 2 A-\mathrm{C} 9 A$	$1.4247(19)$	$\mathrm{O} 4 B-\mathrm{C} 11 B$	$1.4868(19)$
$\mathrm{C} 1 A-\mathrm{O} 1 A-\mathrm{C} 2 A$	$119.30(12)$	$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{S} 1 A$	$125.32(12)$
$\mathrm{C} 1 B-\mathrm{O} 1 B-\mathrm{C} 2 B$	$118.52(12)$	$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{N} 1 B$	$109.94(12)$
$\mathrm{C} 8 A-\mathrm{O} 2 A-\mathrm{C} 9 A$	$116.91(12)$	$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{S} 1 B$	$125.60(12)$
$\mathrm{C} 8 B-\mathrm{O} 2 B-\mathrm{C} 9 B$	$116.49(12)$	$\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{S} 1 B$	$124.46(12)$
$\mathrm{C} 10 A-\mathrm{O} 4 A-\mathrm{C} 11 A$	$120.91(12)$	$\mathrm{O} 3 A-\mathrm{C} 10 A-\mathrm{O} 4 A$	$126.45(15)$
$\mathrm{C} 10 B-\mathrm{O} 4 B-\mathrm{C} 11 B$	$120.00(12)$	$\mathrm{O} 3 A-\mathrm{C} 10 A-\mathrm{C} 9 A$	$124.82(14)$
$\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 4 A$	$123.66(13)$	$\mathrm{O} 4 A-\mathrm{C} 10 A-\mathrm{C} 9 A$	$108.74(13)$
$\mathrm{C} 1 B-\mathrm{N} 1 B-\mathrm{C} 4 B$	$122.44(12)$	$\mathrm{O} 3 B-\mathrm{C} 10 B-\mathrm{O} 4 B$	$127.06(15)$
$\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{O} 1 A$	$109.31(13)$	$\mathrm{O} 3 B-\mathrm{C} 10 B-\mathrm{C} 9 B$	$124.12(15)$
$\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{S} 1 A$	$125.37(12)$	$\mathrm{O} 4 B-\mathrm{C} 10 B-\mathrm{C} 9 B$	$108.82(13)$

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 2 B$	0.86	2.06	$2.920(2)$	173
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 A$	0.86	2.14	$2.9737(18)$	163

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

S1-N2	$1.6593(17)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.388(3)$
S1-C12	$1.712(2)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.394(3)$
S2-C12	$1.653(2)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.393(3)$
O1-C4	$1.355(2)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.308(3)$
O1-C6	$1.426(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.341(3)$
O2-C7	$1.196(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.434(3)$
O3-C7	$1.326(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.355(3)$
O3-C8	$1.481(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.437(3)$
N2-S1-C12	$97.23(9)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$127.14(18)$
C4-O1-C6	$116.05(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.79(18)$
C7-O3-C8	$121.40(17)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$113.06(17)$
C1-N1-C5	$122.74(17)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$	$116.92(17)$
C1-N1-C12	$124.42(17)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$125.76(18)$
C5-N1-C12	$112.84(16)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$117.30(17)$
C5-N2-S1	$107.91(14)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{S} 2$	$126.63(16)$
C2-C1-N1	$118.88(18)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{S} 1$	$105.06(14)$
C1-C2-C3	$120.99(19)$	$\mathrm{S} 2-\mathrm{C} 12-\mathrm{S} 1$	$128.30(13)$
C4-C3-C2	$120.21(19)$		

H atoms were observed in the difference map, but were refined in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ using a riding model. No constraints or restraints were applied to the structural models, however, (I) was corrected for extinction effects using a refineable parameter where F_{c} is multiplied by a modified form of the overall scale factor.

For both compounds, data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

The authors would like to thank the funding of PhD studentships (DD and SR) by the TMR Research Network;

electronic papers

Enantiomeric Separations, which is funded by the EC, contract ERBFMRXCT98023, in collaboration with Trinity College Dublin, Universidad Autónoma Madrid and University of Milano and with the DSM group, the Netherlands and ChiroScience, UK. We also acknowledge the support of the EPSRC Chemistry Programme, in provision of X-ray facilities.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 131-137.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Raston, C. L., White, A. H., Willis, A. C. \& Varghese, J. N. (1974). J. Chem. Soc. Perkin Trans. p. 2. 10, 1096-1098.
Sheldrick, G. M. (1997) SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Webb, T. H. \& Wilcox, C. S. (1993). Chem. Soc. Rev. 22, 383-395.

